The world's biggest diamond company, De Beers, recently announced it would start selling synthetic diamond gemstones for the first time in its 130-year history.
The world's biggest diamond company, De Beers, recently announced it would start selling synthetic diamond gemstones for the first time in its 130-year history.
Artificial diamonds have been manufactured since the 1950s but De Beers has long resisted moving into the synthetic market. The company now believes that technology is efficient enough to produce large quantities of synthetic diamonds with the quality of the best gemstones. How exactly does this process work?
Diamond is highly valued as a transparent gemstone that sparkles like no other. It is also one of the hardest of all materials and feels cold to the touch.
All of these remarkable attributes depend on the perfectly regular arrangement of atoms inside the diamond crystal and all these atoms are exactly the same – they are carbon.
Tiny imperfections in this arrangement, whether an atom that's in the wrong place, missing or of a different element, can lead to huge changes in the diamond's colour. For example, replacing one carbon atom in every 10,000 with a nitrogen atom would turn a transparent gemstone brown.
Getting carbon atoms to arrange in this perfect crystal is not easy and it cannot happen naturally on the Earth's surface since carbon here prefers to form crystals of graphite, the soft black, material we use in pencil leads.
In this environment, carbon atoms also tend to attach more easily to other atoms such as oxygen and hydrogen than to each other.
This means that even making pure graphite crystals is difficult.
Artificial diamonds have been manufactured since the 1950s but De Beers has long resisted moving into the synthetic market. The company now believes that technology is efficient enough to produce large quantities of synthetic diamonds with the quality of the best gemstones. How exactly does this process work?
Diamond is highly valued as a transparent gemstone that sparkles like no other. It is also one of the hardest of all materials and feels cold to the touch.
All of these remarkable attributes depend on the perfectly regular arrangement of atoms inside the diamond crystal and all these atoms are exactly the same – they are carbon.
Tiny imperfections in this arrangement, whether an atom that's in the wrong place, missing or of a different element, can lead to huge changes in the diamond's colour. For example, replacing one carbon atom in every 10,000 with a nitrogen atom would turn a transparent gemstone brown.
Getting carbon atoms to arrange in this perfect crystal is not easy and it cannot happen naturally on the Earth's surface since carbon here prefers to form crystals of graphite, the soft black, material we use in pencil leads.
In this environment, carbon atoms also tend to attach more easily to other atoms such as oxygen and hydrogen than to each other.
This means that even making pure graphite crystals is difficult.